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Absbct .  Applying a magnetic field E to a double-barrier resonant-tunnelling diode, per- 
pendicular to the layer structure, introduces oscillations in current density and capacitance 
that are periodic in 1/B. A derivation of this periodicity is given, based on mherent wave 
propagation. Two magneto-periods are found, corresponding to the electron concentration 
in emitter and well, respectively. Numerical calculations are presented for asemiconductor 
model with self-consistently determined electron potential. 

Theapplication ofamagneticfield in the study of resonant tunnelling mayreveal relevant 
information, a fact long acknow,ledged by both experimentalists and theorists [ 1 4 .  In 
the case of the double-barrier resonant-tunnelling (DBRT) structure, the B ))I geometry 
enables a direct probing of the charge build up in the well [2,3]. Since this phenomenon 
plays a key role in explaining the intrinsic bistability in the I-Y curve of a DEIRT structure, 
magneto-tunnelling experiments have been of importance in the discussion of the nature 
of the observed bistability [24]. Information about charge density and the Fermi level 
iscontainedin the magneto-oscillationsin chargeandcurrent that result from the passing 
of the Landau levels through the Fermi level when varying the magnetic field at fixed 
applied bias voltage. These Shubnikov-de Haas-like oscillations are periodic in 1/B with 
a period l/Bfr which is inversely proportional to the space charge in the well; this 
periodicity has been reported by a number of authors [l-31. 

The careful analysis of the magneto-oscillation spectrum reveals a second peak, 
corresponding to a period that is related to the space charge in the accumulation layer 
in front of the structure. This second peak has been reported by Payling et nl[3,4]. In 
their description of the magnetospectrum, they start from asequential tunnelling picture 

In this paper, we present a derivation of the magneto-spectrum based on the 
description of electron transport as coherent wave propagation. To a great extent, this 
derivation is independent of the specific model of the 1D-tunnelling or of the contact 
layers: for, both classically and quantum mechanically, the iduence of a magnetic field 
perpendicular to the layers is on the lateral motion only. Thus, questions like whether 
the tunnelling is or is not sequential, or whether the Fermi level is or is not constant, do 
not affect the following presentation. 
5 Present address: Tampere University of Technology, Department of Electronics, PO Box 527, 321M) 
Tampere, Finland. 
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In a DBRT-StrUCtUle, there will be a build-up of charge in three layers (see figure 1). 
In the emitter layer, an accumulation of electrons will give rise to a negative charge 
density. Quantum mechanical tunnelling enables the formation of an electron gas, 2~ in 
nature, within the well. Furthermore, the ionized doping in the depleted collector layer 
provides a positive space charge. Since the latter density is determinable via overall 
charge neutrality considerations, we concentrateon the electron densities in the emitter 
and the well. 

Our starting point is a well-known formula for the 3D electron concentration n(r) at 
position r: 

n(r) = x f [ ( E k  - E F ) / k T l l y k ( r ) l Z .  (1) 
k 

Here. the '4Jk(r) are the envelope functions describing the electron states labeled by 
k = (kx,  ky, k z ) .  The functionf(E) = (1 + exp(&))-' is the Fermi-Diracdistribution. We 
take r = 0 to be the middle of the well. Two remarks should be made about (1). First, 
the normalization of the functions Y&) is with respect to the reservoir formed by the 
doped layers that sandwich barriers and well, i.e. for large 14 the electron concentration 
should equal the impurity density ND to ensure charge neutral contacts. Secondly, the 
label k refers to the allowed states in the reservoir. If we let the volume of the reservoir 
tend to infinity, the Hamiltonian equation for the envelope function 161: 

where E,(r) is the conduction band minimum and A(r) is the vector potential, related 
to the magnetic field B via B = V X A, has a continuous spectrum of allowed electron 
energies EA above the conduction band minimum E&) in the reservoir. 

Our first step is to cast (1) into a quasi-io form. Let z be the direction perpendicular 
to the barriers. Avalid choice for the vectorpotentialA is then ( -By ,  O,O), corresponding 
to V . A  = 0 and V X A = (0.0, B). Because of the layered structure, the band edge E, 
depends on z only. Separation of variables is possible: 

replacing (2) by an cquation for the lateral state Gkrhy(x ,y )  containing all field depen- 
dence but no band edge: 

(1/2m)l(fi/i)v + d(r ) l 'vk( r )  + Eco(r)yk(r) = E k y k ( r )  (2) 

y k ( r )  = Gkxhy(x?Y)Fh2(z) Eh = Eh.ky + Ehz (3) 

and an equation for the tunnelling state Fh,(z)  containing the band edge but no field 
dependence: 

After substituting (3) in ( I ) ,  we perform the summation over k, and ky to introduce a 
new weighing function g in which the density of the lateral states is incorporated: 

&'[X,Y; (EA* - EF)/kT] = 2 f[(Ek,hy + Ekz - E ~ ) / k T I l G h ~ k ~ ( x , Y ) l ~  

n(r) = x g [ X , Y ;  (Eh, - E~) /kTl IFh~(z ) l ' .  

(5) 
k x k y  

so (1) now reads: 

(6) 
ha 

In the perfectly layered structures that we consider, g(x ,y ;  E )  will turn out to be 
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independent of the coordinates x and y, i.e. the electron concentration depends on z 
only. Anticipating this, we will writeg(e) instead ofg(x, y ;  E). The functiong(a) has the 
same weighing role as the Fermi-Dirac distribution functionf(E), but differs from the 
latter in having a dimension, the dimension of an areal density. In (6), the ID tunnelling 
described by the functions Fk,(z) is separated from the effect of the lateral states, 
incorporated in g. A magnetic field in the z direction will introduce no direct changes to 
Fk,(z )  hut affect only the weighing function g. 

Our next step is to ensure that in the well only one k, (corresponding to the resonance 
energy E,) is present. We indicate this wave number by k , ,  leave out for z = 0 all terms 
with k, # kzr, and write nWcll = n(z = 0) = g [ ( E ,  - EF)/kT]IFkZr(O) 1'. This result can 
be improved by averaging n(z) over the z interval ( - w / 2 ,  +w/Z) ,  where w is the well 
width. Also, the finite width of the resonance level can be taken into account, changing 
the factor I FkZr(O)l2. However, the essence of our result: the proportionality of nwell and 
g[(Er - E,) /kT]:  

nweti - ( l /w)g[(Er - E F ) / ~ T ]  ( 7 4  
will survive these modifications. 

Contrary to the well, the emitter may contain electrons with any positive energy 
Ekz (upto EF at zero temperature). If we neglect the dependence of I Fk, (z) Iz on k,, i.e. 
if we take the reflection coefficient of the structure equal to unity, we find: 

(76) nemitfer - 1 dk, g[(Ek2 - E F ) / ~ U  

With (7), the basis for our discussion of magneto-oscillations is laid. The electron 
concentration in the well depends on 17, = E,/kT via the function g(E), which is the 
Fermi-Dirac distribution dressed with the density of lateral states. The latter density 
depends on the magnetic field strength. The electron concentration in the emitter can 
he expressed as the integral of the same function, and depends on the reduced Fermi 
energy q = EF/kT. 

Let us have a closer look at the function g(&), and work out (5) in the case of zero 
magnetic field. The function GkXky(x, y) is then a plane wave (see (4a)), and the energy 
EkAY = (h2/2m)(k$ + k;). Substitution of this in (5) yields: 

g(e) = N:'3%()(-&) (8) 
where N ,  = ( m k T / 2 ~ & ~ ) ~ ~  is the effective number of states in the conductionband per 
unit volume (no spin degeneracy), and %,(E) is the Fermi-Dirac integral of order j [7]. 
Substitution of (8) in (7) yields: 

nw,ll - ( i / w ) ~ : / ~ % ~ ( ~  - 11,) ( 9 4  

4 " t t e r  - N C ~ d 1 7 ) .  (9b) 
The difference between (sa) and (9b) is the difference between a ZDEG and a 3DEG. 

In the case of B # 0, we proceed in the same way. Now, the envelope function in 
(4a) is essentially a Hermite polynomial Hl(u), and the energy is quantized into equi- 
distant levels: 

Gkd(x,y) - e*'."e-*~''H,(u) 

Ekxl = E l  = (1  + l)( i ieE/m) 

U = G B E [ y  - iik,/eB] 



V 

nermllcr - ~ , e E s + [ q  - ( ~ + w I .  (1lb) 
I 

Infigure2theexpressions (11) aredrawnforthreevaluesof the temperature, Twolimits 
of (11) can easily be evaluated. If 0 e 1, i.e. if the spacing between the Landau levels is 
much smaller than kT, then the summation in (11) can be replaced by an integration, so 
that the resultsof (9) are retrieved,asexpected; theeffectofthe magnetic fieldiseffaced 
by the temperature. If, on the other hand, e 9 1, we find: 

nwcll - ( i /~)N:’~e  W ( v  - vr)/e + $1 

nemittsr - N,B312 2 Vq/O - ( I  + 1). ’’. 

(1%) 

(126) 
.. . .. . .. ... . . I , ,  

. .  . . .  . .  / = o  . .... . 
The upper limit in the summation of (12b), I,,,, is equal to Int[q/B - 11. Int[x] denotes 
the integral part of x .  The expressions in (12) are independent of temperature. It is in 
this limit. 6 9 1, that the magneto-oscillations are easily recognised: nwell is a decreasing 
function of 110 on every interval ( I  - 1)/(q - q,) < i/e < ( I  + 1)/(q - qr),  I >  0; 
at l/O=(l+$)/(q- q r ) ,  however, nwell increases abruptly by Nf13 .(q - q , ) / ( l+  1). 
Hence, the resulting oscillations in nwsI1 will have a period l/(q - qr)T as a function of 
l/e, corresponding to a period he/m(EF - E,) as a function of reciprocal field 1/B. 
Because the reciprocal period has the dimension of a magnetic field, we call it a ‘fun- 
damental field’ where the notation and terminology are adopted from [4], and denote it 
by Bfr: 

B,, = m(EF - E,)/he (134 
t Here.theuseofthework‘periodic’doesnotimplyinvarianceundertranslation, butthepresenceofapeak 
in the FourierspectNm. 
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Figure 2. (a) The electron density n,!,,., as function of l/B, relative to its value at zero 
magneticfield(see(ll)and(9)),atthreetemperaturesT=0.01 K.4.2KandnK. (b)The 
same for n,,,. Et is taken to be 10 meV and E,, = tEF. m is 0.067 times the electron mass. 

(12b) can be analyzed in the same way: I,, is constant for ( I  - 1)/q < l/f3 < ( I  + +)/q., 
1 2  0. Now, nemifter is continuous and not monotonous on this interval. However, its first 
derivative is discontinuous at 11.9 = (1 + 4)/7,12 0, and this results in oscillations with 
period 1/11, corresponding to a period he/mE, in 1 f B .  The fundamental field, Bi, is in 
this case: 

E ,  = mE,/he. (136) 
Thus, the two quantities E, and E*, of (13) are a brief characterization of the magneto- 
oscillations in nemitter and n,,<,,, respectively. Because the electron concentration in the 
collector is related to those in emitter and well via the demand of charge neutrality, it 
will contain both periods. In the same way, the capacitance of the DBRT structure, 
measured as a function of inverse magnetic field, will peak in its magneto-spectrum at 
both Et and E,. 

Expressions for the fundamental fields were arrived at by considering only the lateral 
motion and assuming that E, and EF do not change with magnetic field. We could 
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avoid considering the motion in the z-direction, i.e. from specifying the factors of 
proportionality in (7). However, in order to couple the fundamental fields to the external 
handle, the bias voltage V applied to the DBRT structure, we need to specify the model 
for tunnelling and reservoirs. Let us first look at what we might term a 'metal picture' of 
the structure: the Fermi level is determined by the impurity density in the doped contact 
layers, and independent of V .  The resonance level with respect to the band edge in the 
well is a constant, Eo, determined by the structure parameters; with respect to the band 
edge in the emitter, however, this level E, decreases with increasing V ,  and if the effect 
of the charge in the well on the band bending is neglected, this dependence is linear. 
Thus, in a metal picture, the function Bf(V) is a constant function, whereas Blr(V) is a 
linear function of V .  Since, at zero temperature, there is resonant charge build-up in the 
well only if 0 < E ,  < EF, the function Bf,(V) is only defined for the corresponding 
voltage interval, in which the field increases from 0 to the constant E,. 

A remark about the condition that EF be independent of B is in order: in a metal 
picture of the contact layers, the electron concentration should equal the ionized- 
impurity density and if the latter does not depend on the magnetic field then neither will 
the former. Hence, magneto-oscillations will now not be found in itemitter but in EF 
insteadt, andin such a way that (126) isstillvalid. Since the oscillations in EF correspond 
tothesame fundamentalfield Bf$,andsincequantitieslike thecapacitanceor thecurrent 
depend on EF,  we will still find the two periods derived above. 

Characterizing the contrasting 'semiconductor picture' by a voltage-dependent 
Fermi level EF(V), we now find an increasing function BXV). Also in this picture, B ,  is 
defined on a small voltage interval only, the beginning of which corresponds to E, = EF 
(i.e. El, = 0) and the end of which corresponds to E, = 0 (i.e. Bfr = Bf ) .  It is within 
this semi-conductor picture that our numerical calculations for a symmetric GaAs/ 
A~.4Gao.& structure are performed [8 ] .  By assuming EF(V = 0) = 0, we neglect all 
doping effect on the Fermi level. Values of E&') for V # 0 are determined via the self- 
consistency demand that V be equal to the charge-induced potential drop plus EF, 
neglecting, however, the potential drops in emitter and collector. These simplifications 
yield, in general, over-large values of EF and hence of Bf and Et, (see figure 3). The ID 
tunnelling through the barriers is calculated in the transfer matrix approach; the sharp 
peak in the transmission probability is approximated by a Dirac-delta function with the 
correct weight. In this way, the factor of proportionality in (717), (9a), (l la) or (12a) is 
found to be h(1 - R,)(1 + RJ/(l  - R,R,) ,  where R, and R, are the reflection coef- 
ficients of the emitter and collector bamer for a wave of energy E.. This 'storage factor' 
expresses the ability of the well to hold the charge: if R, = 1 (at low bias), it is unity, but 
if Rc+ 0 (at higher biases), it approaches f(l - R.) 1. In particular, when Re+ 1 
(i.e. when E,+ 0 and E, reaches its maximum), the storage factor, and hence nWel1, 
approaches zero. This is in contrast with a true ZDEG characterized by a storage factor 
of unity. There, the zero-field-zero-temperature concentration is proportional to Bf, 
(cf. (9a) and (13~)). Here, it is the decreasing storage factor, i.e. the leaky nature of the 
well, that frustrates such a linear relation between Bfr and the amount of space charge 
in the wells. 

A similar remark to that for the metal picture must be made for the semiconductor 

t Even when 
to a fluctuating screening length for that layer. 
i: With a field-dependent Fermi level &(E) ,  (13) is to be read as: B, = m&(O)/&. 
8 Surprisingly,this'coherent'storagefactorwincideswiththe'sequential'one asgiven by SheaidandToombs 
(see (5) and (8) in 1.51). at least for R, and R, close to unity. However, since they regard this factor as 
independent of the bias voltage, in their theory a proportionality between E,, and nwll still holds. 

isconstant, the areal charge density in the emitter will still fluctuate with changing B ,  due 
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Figure3. (a)Sheet densityoaofthechargeintheleftspacerasafunctionof l/Bat fixedbias 
voltage V, = 0.156V, determined numerically with self-consistent electrostatic feedback. 
Structure parameters: s,-b-w-b, = 25-5.&5.&5.6 nm; barrier height is taken to be 
0.44 eV; m is 0.067 times the electron mass; e, = 13.4 (GaAs-Al&%.&s values). (b) Its 
Fourier spectrum. 
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0 0.1 0.2 0.3 0.4 0.5 
v IVI 

Figure 4. Inverse periods B, and E,, as functions of V .  Structure parameters as in figure 3 

picture: since both EF and nemiller appear in the self-consistency requirement, we are not 
free to choose one of the two independent of B .  Consequently, both E ,  and nemirter 
exhibit magneto-oscillations, that are restricted by (1%) only. Since also nweil appears 
in the self-consistency requirement, the resulting oscillations in all three quantities will 
containboth periods l/Bfand 1/Bf,(seefigure4). Inotherwords,itistheself-consistency 
requirement in the semiconductor model, that effectuates the concurrence of the two 
fundamental fields in the spectra of all quantities. 

If we apply the above discussion to the experimental results of [3,4], we find that, 
for the examined structures, the metal picture is most appropriate: the slope of E,( V )  is 
found to be smaller than T mV-', corresponding to a change in EF with V of 
lo-' eV V-', too small for a pure semi-conductor model. For a different type of struc- 
tures, including spacers or moderately doped contact layers, a semiconductor picture 
may be more favourable. 

Sincewestartedonr discussionfromcoherent wave propagation, wecannot compare 
OUI theory to the experiments of Leadbeater et a l [ 9 ] ,  where thermalization plays an 
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essentialrole.There, the tunnellingisnot coherent,viaaresonant state (i.e. astate with 
energy that is positive with respect to the band edge in both emitter and collector 
contact), but non-coherent or ‘sequential’, via a ‘quasi-bound’ state (i.e. a state with 
energythatisnegativewithrespect tothebandedgeinoneofthecontacts). Inthelightly 
doped emitter, a ZDEG builds up by thermionic processes, whereas in our coherent 
picture a ~ D E G  results (cf. (9)). This indicates once more that our analysis is restricted 
to the low bias region. 

Summarizing, we have demonstrated that coherent tunnelling in a DBRT structure 
will lead to biperiodicity in the magneto-spectrum of charge and current densities. In 
the low bias region, the 3D contact and the 2DEG in the well each provides its own period. 
The self-consistent electrostatic feedback effectuates the appearance of both periods in 
all relevant quantities. 
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