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Abstract. Applying a magnetic field B to a double-barrier resonant-tunnelling diode, per-
pendicular to the layer structure, introduces oscillations in current density and capacitance
that are periodic in 1/B. A derivation of this periodicity is given, based on coherent wave
propagation. Two magneto-periods are found, corresponding to the electron concentration
in emitter and well, respectively. Numerical calculations are presented for a semiconductor
model with setf-consistently determined electron potential.

The application of amagneticfield inthe study of resonant tunnelling may reveal relevant
information, a fact long acknowledged by both experimentalists and theorists [1-4]. In
the case of the double-barrier resonant-tunnelling (DBRT) structure, the B|J geometry
enables a direct probing of the charge buiid up in the well |2, 3]. Since this phenomenon
plays a key role in explaining the intrinsic bistability in the I-V curve of a DERT structure,
magneto-tunnelling experiments have been of importance in the discussion of the nature
of the observed bistability [2-4]. Information about charge density and the Fermi level
iscontainedin the magneto-oscillationsin charge and current that result from the passing
of the Landau levels through the Fermi level when varying the magnetic field at fixed
applied bias voltage. These Shubnikov-de Haas-like oscillations are periodicin 1/B with
a period 1/B;, which is inversely proportional to the space charge in the well; this
periodicity has been reported by a number of authors [1-3].

The careful analysis of the magneto-oscillation spectrum reveals a second peak,
corresponding to a period that is related to the space charge in the accumulation layer
in front of the structure. This second peak has been reported by Payling et af [3, 4. In
their description of the magnetospectrum, they start from a sequential tunnelling picture
[4, 5].

In this paper, we present a derivation of the magneto-spectrum based on the
description of electron transport as coherent wave propagation. To a great extent, this
derivation is independent of the specific model of the 1p-tunnelling or of the contact
layers: for, both classically and quantum mechanically, the influence of a magnetic field
perpendicular to the layers is on the lateral motion only. Thus, questions like whether
the tunnelling is or is not sequential, or whether the Fermi level is or is not constant, do
not affect the following presentation.
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In a DBRT-structure, there will be a build-up of charge in three Jayers (see figure 1).
In the emitter layer, an accumulation of electrons will give rise to a negative charge
density. Quantum mechanical tunnelling enables the formation of an electron gas, 2D in
nature, within the well. Furthermore, the ionized doping in the depleted collector layer
provides a positive space charge. Since the latter density is determinable via overall
charge neutrality considerations, we concentrate on the electron densities in the emitter
and the well.

Qur starting point is a well-known formula for the 3D electron concentration n(r) at
position r:

nr) = %f[usk — Ep)/kT]|W,(r)|2. ()

Here, the W,(r) are the envelope functions describing the electron states labeled by
k = (k,, k,, k,). The function f(e} = (1 + exp(e))~" is the Fermi-Dirac distribution. We
take r = 0 to be the middle of the well. Two remarks should be made about (1). First,
the normalization of the functions W ,{r) is with respect to the reservoir formed by the
doped layers that sandwich barriers and well, i.¢. for large [r| the electron concentration
should equal the impurity density Vp, to ensure charge neutral contacts. Secondly, the
label k refers to the allowed states in the reservoir. If we let the volume of the reservoir
tend to infinity, the Hamiltonian equation for the envelope function [6]:

(1/2m)[(R/DV + AP Wi(r) + Eo(r)Wilr) = EWi(r) 2)
where E_,(r) is the conduction band minimum and A(r) is the vector potential, related
to the magnetic field B via B = V X A, has a continuous spectrum of allowed electron
energies E, above the conduction band minimum E_,(r) in the reservoir.

Our first step is to cast (1) into a quasi-1D form. Let z be the direction perpendicular
tothe barriers. A valid choice for the vectorpotential A is then (- By, 0,0), corresponding
toV+A=0andV x A = (0.0, B). Because of the layered structure, the band edge E_,
depends on z only. Separation of variables is possible:

Wi lr) = G, (x, Y)F; (2) Ey=Ei, + Ey, (3)

replacing (2) by an equation for the lateral state Gy, (x, y) containing all field depen-
dence but no band edge:

1 [(hd L (hey |
En_ [(1—3; - eB}') * (;3—,;) ]Gk;ky(x’ y)= Ekxkyckxky(x’y) (4a)

xky

and an equation for the tunnelling state F; (z) containing the band edge but no field
dependence:
1 /Ad

\ 2
E?’?_’l(;a;) sz(z) + Eco(z)Fk;(z) = Ekszz (2)- (4b)

After substituting (3) in (1), we perform the summation over &, and £, to introduce a
new weighing function g in which the density of the lateral states is incorporated:

glx, yi (Ex, — Eg)/kT] = 5 f[(Ek,ky + By, — EF)/lelexk,(x:Y)P 3
s0 (1) now reads:

n(r) = ;Zg[x,y; (Ex, — Ex)/kT1|Fe, (2)I* 6)

In the perfectly layered structures that we comsider, g(x, y; €) will turn out to be
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independent of the coordinates x and y, i.e. the electron concentration depends on z
only. Anticipating this, we will write g(¢) instead of g(x, y; £). The function g(e) has the
same weighing role as the Fermi~Dirac distribution function f(¢), but differs from the
latter in having a dimension, the dimension of an areal density. In (6), the 1D tunnelling
described by the functions F, (z) is separated from the effect of the lateral states,
incorporated in g. A magnetic field in the z direction will introduce no direct changes to
F {z) but affect only the weighing function g.

Our next step is to ensure that in the well only one &, (corresponding to the resonance
energy E,) is present. We indicate this wave number by &, leave out for z = Q all terms
with k, # k., and write n,., = n(z = 0) = g[(E, — E¢)/kT]1F,_(0)|%. This result can
be improved by averaging n(z) over the z interval (—w/2, +w/2), where w is the well
width. Also, the finite width of the resonance level can be taken into account, changing
the factor | F;_ (0)]2. However, the essence of our result: the proportionality of n,,., and

8l(E. ~ Eg)/kT]:
Ryen ~ (l/w)g[(Er - EF)/kT] (7(1)

will survive these modifications.
Contrary to the well, the emitter may contain electrons with any positive energy
E,, (upto Ef at zero temperature). If we neglect the dependence of | F; (2)|* on k,. i.e.

if we take the reflection coefficient of the structure equal to unity, we find:
R emitter ~j dkz g[(Ekz - EF)/kTI (7b)
0

With (7), the basis for our discussion of magneto-oscillations is laid. The electron
concentration in the well depends on 5, = E,/kT via the function g(g), which is the
Fermi-Dirac distribution dressed with the density of lateral states, The latter density
depends on the magnetic field strength. The electron concentration in the emitter can
be expressed as the integral of the same function, and depends on the reduced Fermi
energy n = Eg/kT.

Let us have a closer look at the function g(¢), and work out (5) in the case of zero
magnetic field. The function Gy, (x, y) is then a plane wave (see (4a)), and the energy

Ej, = (A /2m)(k% + k3). Substitution of this in (5) yields:

g(e) = N¥PFo(—¢) (8)
where N, = (mkT/27#?)%? is the effective number of states in the conduction band per
unit volume (no spin degeneracy), and F() is the Fermi-Dirac integral of order j [7].
Substitution of (8) in (7) yields:

fuen ~ (L/W)NLFo(n = 1) (9a)

Aemitter ™ Nc%uz(ﬂ)- (96)
The difference between (9a) and (9b) is the difference between a 2DEG and a 3DEG.

In the case of B # 0, we proceed in the same way. Now, the envelope function in

(4a) is essentially a Hermite polynomial H{(u), and the energy is quantized into equi-
distant levels:

Giglr,y) ~ e VM H ) u=V{eBIR)y - #k,/eB]
E =E; = (I +$)(heB/m)
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_ Figure 1. Conduction-band minimum in the DBRT
5, by ] by structure as 2 function of position z.

where the quasi-continuous label k, is replaced by the non-negative integer/, expressing
the quantizing effect of the magnetic field. In fact, / labels the so-called Landau levels
of the energy associated with the lateral motion. Substitution in (5) yields:

gle, 0) = N¥*@ 2 fle + (I + §)8] (10)
f

where 8 = heB/mkT is the ‘reduced’ magnetic field. Since now g depends also on B or
8, an extra slot to g is added. Using (10) in (7), the electron concentrations in emitter
and well are found to be:

nmnwumwwegﬁm—n+u+am (11a)
M emnitter ~Nc92g-lf2[n - (l+i)9] (llb)
!

In figure 2 the expressions (11) are drawn for three values of the temperature. Two limits
of (11) can easily be evaluated. If € <€ 1, i.e. if the spacing between the Landau levels is
much smaller than &£ T, then the summation in (11) can be replaced by an integration, so
that the results of (9) are retrieved, as expected; the effect of the magnetic field is effaced
by the temperature. If, on the other hand, 6 > 1, we find:

Puen ~ (L/W)NE*8 Int[(n — 1,)/6 + 4] (124)

[max
Romiver ~ N8 2 Vf6-G+H. - (125)
1=0

The upper limit in the summation of (126}, I, is equal to Int[#/6 ~ 3]. Int[x] denotes
the integral part of x. The expressions in (12) are independent of temperature. It is in
this limit, @ ® 1, that the magneto-oscillations are easily recognised: n,, is 2 decreasing
function of 1/8 on every interval (! —§)/(n —n,)<1/0<({+3)/(n-1n.), [=0;
at 1/0=(1+4)/(n—n,), however, n, increases abruptly by N%°.(n — n,)/(l + ).
Hence, the resulting oscillations in r,,, will have a period 1/(n = 1)t as a function of
1/6, corresponding to a period #e/m(Er — E,) as a function of reciprocal field 1/B.
Because the reciprocal period has the dimension of a magnetic field, we call it a ‘fun-
damental field’ where the notation and terminology are adopted from [4], and denote it
by Bfr:

By = m(Er — E.)/he (13a)

t Here, the use of the work ‘periodic’ does not imply invariance under translation, but the presence of a peak
in the Fourier spectrum.
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Figure 2. (a) The electron density m e, a5 function of 1/B, relative to its value at zero
magnetic field (see (11) and (9)), at three temperatures T=0.01 K, 4.2 Kand 77 &, (b) The
same for n.;. E;is taken to be 10 meV and £, = $E¢. m is 0,067 times the electron mass.

(12b) can be analyzed in the same way: [, is constant for (/ — §}/n <1/6 < (I + /1,

I = 0. Now, A.pine: 15 continuous and not monotonous on this interval. However, its first
derivative is discontinuous at 1/8 = ({ + 4)/n, { = 0, and this results in oscillations with
period 1/n, corresponding to a period #ie/mEg in 1/B. The fundamental field, By, is in
this case:

B, = mEg [he. (13b)

Thus, the two quantities By and By, of (13) are a brief characterization of the magneto-
oscillations in 7., and k., respectively. Because the electron concentration in the
collector is related to those in emitter and well via the demand of charge neutrality, it
will contain both periods. In the same way, the capacitance of the DBRT structure,
measured as a function of inverse magnetic field, will peak in its magneto-spectrum at
both Bi and Bfr'

Expressions for the fundamental fields were arrived at by considering only the lateral
motion and assuming that E, and Ep do not change with magnetic field. We could
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avoid considering the motion in the z-direction, i.e. from specifying the factors of
proportionality in (7). However, in order to couple the fundamental fields to the external
handle, the bias voltage V applied to the DBRT structure, we need to specify the model
for tunnelling and reservoirs. Let us first look at what we might term a ‘metal picture’ of
the structure: the Fermi level is determined by the impurity density in the doped contact
layers, and independent of V. The resonance level with respect to the band edge in the
well is a constant, E,, determined by the structure parameters; with respect to the band
edge in the emitter, however, this level E, decreases with increasing V, and if the effect
of the charge in the well on the band bending is neglected, this dependence is linear.
Thus, in a metal picture, the function B{(V) is a constant function, whereas By (V) isa
linear function of V. Since, at zero temperature, there is resonant charge build-up in the
well only if 0 < E, < Ef, the function B (V) is only defined for the corresponding
voltage interval, in which the field increases from 0 to the constant B;.

A remark about the condition that E be independent of B is in order: in a metal
picture of the contact layers, the electron concentration should equal the ionized-
impurity density and if the latter does not depend on the magnetic field then neither will
the former. Hence, magneto-oscillations will now not be found in n g, but in Ep
instead?, and in such a way that (12b)is still valid. Since the oscillations in £ correspond
tothe same fundamental field B¢}, and since quantities like the capacitance or the current
depend on Eg, we will still find the two periods derived above.

Characterizing the contrasting ‘semiconductor picture’ by a voltage-dependent
Fermi level Ep(V), we now find an increasing function B{V). Also in this picture, By, is
defined on a small voltage interval only, the beginning of which corresponds to E, = E¢
(i.e. By = 0) and the end of which corresponds to E; = 0 (i.e. By = By). It is within
this semi-conductor picture that our numerical calculations for a symmetric GaAs/
Al 4Gay oAs structure are performed [8]. By assuming Ex(V = 0) = 0, we neglect alt
doping effect on the Fermi level. Values of E(V) for V' # 0 are determined via the self-
consistency demand that V' be equal to the charge-induced potential drop plus Ep,
neglecting, however, the potential drops in emitter and collector. These simplifications
yield, in general, over-large values of £ and hence of B; and B, (see figure 3}. The 1D
tunnelling through the barriers is calculated in the transfer matrix approach; the sharp
peak in the transmission probability is approximated by a Dirac-delta function with the
correct weight. In this way, the factor of proportionality in (7a), (9a), (11a) or (12a) is
found to be 4(1 — R.}{(1+ R.)/(1 — R.R.), where R, and R, are the reflection coef-
ficients of the emitter and collector barrier for a wave of energy E,. This ‘storage factor’
expresses the ability of the well to hold the charge: if R, = 1 (at Jow bias), it is unity, but
if R,~> 0 (at higher biases), it approaches (1 — R.) < 1. In particular, when R,-—> 1
(i.e. when E,— (0 and By reaches its maximum), the storage factor, and hence n,,,
approaches zero. This 15 in contrast with a true 2DEG characterized by a storage factor
of unity. There, the zero-field—zero-temperature concentration is proportional to By,
(cf. (9a) and (13a)). Here, it is the decreasing storage factor, i.e. the leaky nature of the
well, that frustrates such a linear relation between By, and the amount of space charge
in the well§.

A similar remark to that for the metal picture must be made for the semiconductor

+ Even when . is constant, the areal charge density in the emitter will still fluctuate with changing B, due
to a fluctuating screening length for that layer.,

% With a ficld-dependent Fermi level Ex(B), (13) is to be read as: B = mEp(0)/%e.

§ Surprisingly, this ‘coherent’ storage factor coincides with the ‘sequential’ one as given by Sheard and Toombs
(see (5) and (B) in [5]), at least for R, and R, close to unity. However, since they regard this factor as
independent of the bias voltage, in their theory a proportionality between By, and a,,. still holds,
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Figure 3. (#) Sheet density o, of the charge in the left spacer as a function of 1/B at fixed bias
voltage V, = (0.156 V, determined numerically with self-consistent electrostatic feedback,
Structure parameters: §-b—w—b; = 2.5-5.6-5.0-5.6 nm; barrier height is taken to be
0.44 eV; m is 0067 times the electron mass; £, = 13.4 (GaAs-Aly «Gag 4As values). (b) Its

Fourier spectrum.
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Figure 4. [nverse periods B; and B, as functions of V. Structure parameters as in figure 3.

picture: since both Ep and 7., appear in the self-consistency requirement, we are not
free to choose one of the two independent of B. Consequently, both E¢ and Ay
exhibit magneto-oscillations, that are restricted by (12b) only. Since also n, ., appears
in the self-consistency requirement, the resulting oscillations ir all three quantities will
contain both periods 1/Byand 1/By, (see figure 4). In other words, it is the self-consistency
requirement in the semiconductor model, that effectuates the concurrence of the two
fundamental fields in the spectra of all quantities.

If we apply the above discussion to the experimental results of [3, 4], we find that,
for the examined structures, the metal picture is most appropriate: the slope of B;(V') is
found to be smaller than 102 TmV™, corresponding to a change in Ep with V of
1072eV V-1, too small for a pure semi-conductor model. For a different type of struc-
tures, including spacers or moderately doped contact layers, a semiconductor picture
may be more favourable.

Since we started our discussion from coherent wave propagation, we cannot compare
our theory to the experiments of Leadbeater et al [9], where thermalization plays an
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essential role. There, the tunnelling is not coherent, via a resonant state (i.e. a state with
energy that is positive with respect to the band edge in both emitter and collector
contact), but non-coherent or ‘sequential’, via a ‘quasi-bound’ state (i.e. a state with
energy that is negative with respect to the band edge in one of the contacts). In the lightly
doped emitter, a 20EG builds up by thermionic processes, whereas in our coherent
picture a 3DEG results (cf. (9)). This indicates once more that our analysis is restricted
to the low bias region.

Summarizing, we have demonstrated that coherent tunnelling in a DBRT structure
will lead to biperiodicity in the magneto-spectrum of charge and current densities. In
the low bias region, the 3D contact and the 2DEG in the well each provides its own period.
The self-consistent electrostatic feedback effectuates the appearance of both periods in
all relevant quantities.
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